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Abstract. Cell-based fluorescence imaging assays are heterogeneous re-
quiring collection of a large number of images for detailed quantitative
analysis. Complexities arise as a result of variation in spatial nonuni-
formity, shape, overlapping compartments, and scale. A new technique
and methodology has been developed and tested for delineating subcellu-
lar morphology and partitioning overlapping compartments at multiple
scales. This system is packaged as an integrated software platform for
quantifying images that are obtained through fluorescence microscopy.
Proposed methods are model-based, leveraging geometric shape proper-
ties of subcellular compartments and corresponding protein localization.
From the morphological perspective, convexity constraint is imposed to
delineate, partition, and group nuclear compartments. From the protein
localization perspective, radial symmetry is imposed to localize punctate
protein events at sub-micron resolution. The technique has been tested
against 196 images that were generated to study centrosome abnormal-
ities. Computed representations are evaluated against the ground truth
annotation for comparative analysis.

1 Introduction

The response of tissues and biological material in general to exogenous stim-
uli is often heterogeneous and requires a large set of samples for each exper-
imental variable, e.g., tissue type, type of stimuli, dosage, and concentration.
These responses are often multidimensional and multispectral and can be im-
aged using different type of microscopy. Quantitative analysis of these responses
is a necessary step toward visualization of large scale co-localization studies
and construction of predictive models. Research in this area has spanned from
learning techniques using texture-based features for characterizing patterns of
protein expression [3] to geometric techniques using nonlinear diffusion [1, 12],
curve evolution, and shape regularization for segmentation of subcellular com-
partments [4,5,12]. Often segmentation provides context for quantifying protein
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expression. However when protein expression is not diffuse within a compart-
ment, additional processing is needed within the specific context. This paper
outlines a complete methodology and its evaluation for quantitative assessment
of co-localization studies in cell culture assays. Although the technique has been
tested against studying centrosomal abnormalities (CA), it is extensible to other
phenotypic studies. As CA occur in less than 2% of normal tissue and in about
80% of breast cancers [9]. CA may serve as valuable prognostic and therapeutic
targets. Various cellular stresses such as viral infection, exposure to ionizing ra-
diation and altered microenvironmental stimuli, can augment the frequency and
type of CA [8]. Within resting animal cells, the centrosome represents a major
microtubule organizing center and is composed of a pair of centrioles and peri-
centriolar material. Prior to division, the centrosome will replicate during the
DNA synthesis phase of the cell cycle. During mitosis replicated centrosomes will
separate and nucleate a bipolar spindle that equally contacts and segregates the
replicated genetic information into two daughter cells. One facet of CA refers to
additional centrosomes (more than two), which leads to abnormal cell division.
As CA are rare events in cell culture assays, large numbers of samples within
and between treatment groups must be analyzed for objective results. Com-
plexities arise as a result of nonuniform staining, overlapping nuclei, touching
centrioles, and scales of these subcellular compartments. In the proposed sys-
tem, these complexities are addressed through model-based techniques that are
driven by the inherent geometries. These geometric constraints take advantage
of the convexity features of the nuclear compartment and the radial symme-
try of the centrosome. Nuclear extraction is initiated from differential spatial
operators as opposed to intensity thresholding, which is a common practice in
most ad-hoc solutions. These differential operators lead to edge fragments that
are linked for high-level geometric analysis, partitioning, and grouping. Nuclear
regions provide context for quantitative protein localization. When localization
is not diffused, additional analysis is required to characterize punctate signals.
These punctate signals may vary in shape, scale, and intensity. Furthermore,
they often overlap and create additional complexity. These complexities are ad-
dressed through a special class of iterative voting, which is kernel-based, and its
topography favors radial symmetries. It is robust with respect to variation in
size and intensity, and delineates overlapped compartments.

Organization of this paper is as follows. Section 2 reviews previous research.
Section 3 summarizes geometric segmentation of the nuclear regions which pro-
vide the context for protein localization. Section 4 outlines the spatial voting
technique for protein localization. Section 5 provides (1)the experimental results
for 196 images, and (2)the comparison of the system performance against manual
analysis.

2 Previous work

The difficulties in localization of subcellular compartments are often due to vari-
ations in scale, noise, and topology. Other complexities originate from missing



data and perceptual boundaries that lead to diffusion and dispersion of the spa-
tial grouping in the object space. Techniques for extraction of nuclear compart-
ments are either through global thresholding or adaptive (localized) thresholding
followed by watershed method for separating adjacent regions. Techniques in ra-
dial symmetries, as evident by centrosome configuration, can be classified into
three different categories: (1) point operations leading to dense output, (2) clus-
tering based on parameterized shape models or voting schemes, and (3) iterative
techniques. Point operations are usually a series of cascade filters that are tuned
for radial symmetries. These techniques use image gradient magnitudes and ori-
entations to infer the center of mass for regions of interest [6, 7, 10]. Parametric
techniques tend to be more robust as long as the geometric model captures perti-
nent shape features at a specific scale, e.g., Hough transform. Iterative methods,
such as watershed [11], regularized centroid transform [12], and geometric voting
Yang04, produce superior results because they compensate for larger variation
of shape feaures.

The method implemented here falls into the category of iterative techniques
which are adaptive to geometric perturbation and typically produce more stable
results. This method shares several attributes with tensor-based voting [2], but
it differs in that it is scalar and iterative.

3 Segmentation

In a typical 2D cell culture assay that is stained for nuclear compartment, some
nuclei are isolated and others are clustered together to form clumps. Thus, the
strategy is to detect isolated ones first, and then impose additional processing
for the clumped regions. The image signature suggests that thresholding may
be sufficient as an initial step; however, shading, nonuniform staining, and other
artifacts demands a localized strategy. This localized strategy is an edge-based
technique with a geometric convexity optimization approach for improved reli-
ability. Edges are collected to form contours and then tested for convexity. If
convexity fails then the clumped region is partitioned into multiple convex re-
gions according to a geometric policy. Several intermediate steps are shown in
Figure 1, and steps are as follows.

3.1 Boundary extraction and convexity

Let I(x, y) be the original image with 2D image coordinates. An initial bound-
ary is extracted by linking zero-crossing edges that are filtered by the gradient
magnitude at the same scale. Zero-crossing (computed from Laplacian, ∇2I)
assures that boundaries are closed, and the gradient threshold assures that spu-
rious contours are eliminated. Two gradient thresholds (low and high) are used
to initiate linking from strong edges and fill the gaps with weak edge points.
Next, each computed contour is approximated with a polygon and total angu-
lar change is computed to test for convexity. If the region is not convex then
additional processing is initiated.



3.2 Grouping and Partitioning

Partitioning of clumped nuclei into distinct convex objects is through iterative
decomposition and constraint satisfaction. Intuitively, these partitions should be
terminated by folds in the boundary corresponding to positive curvature max-
ima. The main purpose of the constraint-based grouping is to limit the number
of hypotheses and reduce computational cost. The net result of this process is
a set of corresponding candidates for each positive curvature maxima point for
potential decomposition. The following geometric constraints are enforced.

Positive curvature constraint The curvature at any point along the contour is
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. The contour derivatives are computed by convolving

derivatives of a Gaussian with the contour information. The intent is to partition
a clump of nuclei from the points of maximum curvature along the contour.

Antiparallel constraint The antiparallel constraint asserts that each pair of posi-
tive curvature maxima along the contour must be antiparallel, which is estimated
by computing the tangent directions at each candidate point. This constraint
reduces the number of hypotheses for a potential partition thus reducing the
computational cost.

Non-intersecting constraint The Non-intersecting constraint asserts that a par-
tition cannot intersect existing boundaries corresponding to the entire blob or
other hypothesized partitions.

Convexity constraint The nuclear regions that occur in the cell culture are always
convex, the convexity constraint enforces that the partition obtained has to be
convex to avoid incorrect segmentation.

Grouping and partitioning Each clump is partitioned by linking pairs of positive
curvature maxima that satisfy the above conditions. Each configuration has its
own cost function, and the optimum configuration satisfies all the above men-
tioned constraints and will minimize C = Σn

i=1
φi−Π

Π
, where n is the number

of partition in a clump, determined by the system as follows. Essentially, the
problem if reduced to grouping of curvature maximas in such a way that certain
geometric constraints are satisfied.

Decomposition Algorithm

1. Localize positive curvature maxima along the contour
2. Set initial number of compartments n:= 2
3. Construct a set of all valid configurations of n compartments by connecting

valid pairs of positive curvature maxima satisfying the antiparallel,
non-intersecting and convexity constraints

4. Evaluate cost of each configuration (per Equation 2)
5. Increment the compartment count n:=n+1 and repeat steps 3 and 4 until

there is at least one configuration that has all convex compartments
6. Select the configuration with the least cost function



(a) (b) (c) (d)

Fig. 1. Steps in segmentation: (a) Zero-crossing of Laplacian; (b) gradient image; (c)
points of maximum curvature along contours; and (d) partitioning of clumped nuclei.

4 Protein localization

The problem of localizing punctate protein expression was first evaluated using
Hough transform, cross correlation against training samples, and analysis of
local intensity distribution. These Clustering based on Hough method proved
to be scale sensitive, while correlation and intensity-based methods suffers from
false positives and lack of geometric models. A geometric model is essential in
the presence of scale varying and overlapping protein signals. A spatial class
of spatial iterative voting is introduced to facilitate these requirements. Voting
along gradient direction provides a hypothesis profile for saliency, e.g., punctate
protein events. A specific kernel design (1) encodes the knowledge for saliency,
(2) applied at each edge location along the gradient direction, and (3) refined
and reoriented at each iteration step. The shape and evolution of these kernels,
inferring center of mass, is shown in Figure 2. A brief review of the technique [13]
is as follows: Let I(x, y) be the original image, where the domain points (x, y)
are 2D image coordinates. Let α(x, y) be the voting direction at each image
point, where α(x, y) := (cos(θ(x, y)), sin(θ(x, y))) for some angle θ(x, y) that
varies with the image location. Let {rmin, rmax} be the radial range and ∆ be
the angular range. Let V (x, y; rmin, rmax, ∆) be the vote image, dependent on
the radial and angular ranges and having the same dimensions as the original
image. Let A(x, y; rmin, rmax, ∆) be the local voting area, defined at each image
point (x, y) and dependent on the radial and angular ranges, defined by

A(x, y; rmin, rmax, ∆) := {(x ± r cosφ, y ± r sin φ) | rmin ≤ r ≤ rmax and
θ(x, y) − ∆ ≤ φ ≤ θ(x, y) + ∆}

(1)

Finally, let K(x, y; σ, α, A) be a 2D Gaussian kernel with variance σ, masked by
the local voting area A(x, y; rmin, rmax, ∆) and oriented in the voting direction



α(x, y). Figure 2 shows a subset of voting kernels that vary in topography, scale,
and orientation.

(a) (b) (c) (d) (e)

Fig. 2. Kernel topography: (a-e)The Evolving kernel, used for the detection of radial
symmetries (shown at a fixed orientation) has a trapezoidal active area with Gaussian
distribution along both axes.

The iterative voting algorithm is outlined below for radial symmetry.

Iterative Voting

1. Initialize the parameters: Initialize rmin, rmax, ∆max, and a sequence
∆max = ∆N < ∆N−1 < · · · < ∆0 = 0. Set n := N , where N is the number
of iterations, and let ∆n = ∆max. Also fix a low gradient threshold, Γg and
a kernel variance, σ, depending on the expected scale of salient features.

2. Initialize the saliency feature image: Define the feature image F (x, y) to be
the local external force at each pixel of the original image. The external
force is often set to the gradient magnitude or maximum curvature
depending upon the the type of saliency grouping and the presence of local
feature boundaries.

3. Initialize the voting direction and magnitude: Compute the image gradient,
∇I(x, y), and its magnitude, ||∇I(x, y)||. Define a pixel subset
S := {(x, y)| ||∇I(x, y)|| > Γg}. For each grid point (x, y) ∈ S, define the
voting direction to be

α(x, y) := −
∇I(x, y)

||∇I(x, y)||

4. Compute the votes: Reset the vote image V (x, y; rmin, rmax, ∆n) = 0 for all
points (x, y). For each pixel (x, y) ∈ S, update the vote image as follows:

V (x, y; rmin, rmax, ∆n) := V (x, y; rmin, rmax, ∆n) +
∑

(u,v)∈A(x,y;rmin,rmax,∆n) F (x − w
2 + u, y − h

2 + v)K(u, v; σ, α, A),

where w = max(u) and h = max(v) are the maximum dimensions of the
voting area.



5. Update the voting direction: For each grid point (x, y) ∈ S, revise the
voting direction. Let

(u∗, v∗) = arg max
(u,v)∈A(x,y;rmin,rmax,∆n)

V (u, v; rmin, rmax, ∆n)

Let dx = u∗ − x, dy = v∗ − y, and

α(x, y) =
(dx, dy)

√

d2
x + d2

y

6. Refine the angular range: Let n := n − 1, and repeat steps 4-6 until n = 0.
7. Determine the points of saliency: Define the centers of mass or completed

boundaries by thresholding the vote image:

C = {(x, y) | V (x, y; rmin, rmax, ∆0) > Γv}

(a) (b) (c) (d) (e)

Fig. 3. Detection of radial symmetries for a synthetic image simulating three overlap-
ping centrosomes (a protein event): (a) original image; (b)-(e) voting landscape at each
iteration.

An example of the application of radial kernels to overlapping objects is
shown in Figure 3 together with the intermediate results. The voting landscape
corresponds to the spatial clustering that is initially diffuse and subsequently
refined and focused into distinct islands.

5 Experimental results and conclusion

A total of 196 images were processed to quantify number of abnormal centro-
somes for each nucleus in the image. This result was then compared against
manual count for validation, as shown in Figure 4. The system’s error is at 1%
and 10% for nuclear segmentation and quantitation of centrosome abnormality,
respectively. Figure 5 shows the performance of the system on overlapping nu-
clear regions. It should be noted that in some cases there is no intensity decay



when adjacent nuclei overlap; watershed-based techniques can fail to produce
proper decomposition of nuclear compartments under these conditions. In con-
trast, proposed geometric approach is invariant to intensity distribution as a
basis for decomposition. An example of localization of centrosomes through vot-
ing is shown in Figure 6, where a rare event due to CA is captured in region 20
and region 45. Each punctate signal is assigned to the closest nuclear boundary.
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(a) (b)

Fig. 4. Comparative results of abnormal centrosomes between manual and automated
counting for two separate treatments. Each chart shows manual (on the left) and au-
tomated quantitation (on the right).

(a) (b) (c)

(d) (e) (f)

Fig. 5. Decomposition of overlapping nuclei: (a)-(c) original images; (d)-(f) decompo-
sition results.



(a) (b)

(c) (d)

Fig. 6. Nuclear segmentation and centrosome localization indicates decomposition of
overlapping nuclear compartments and detection of nearby punctate events correspond-
ing to centrosome organelle: (a) original nuclear image; (b) corresponding centrosomes
image; (c) segmented nuclear compartments; and (d) localized centrosomes. A rare
event in nuclei 20 and 45 indicates four and three centrosomes, respectively. Nuclear
and centrosome regions are represented by cyan contours and cyan dots, respectively.
Ambiguities due to adjacent and overlapping regions (both nuclear and centrosomes)
are resolved. Furthermore, pertinent events are measured in context. For example,
centrosome abnormality of region 20 is referenced against correct nuclear size of mor-
phology.


